By Topic

Estimation of subpixel target size for remotely sensed imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chein-I Chang ; Dept. of Comput. Sci. & Electr. Eng., Maryland Univ., Baltimore, MD, USA ; Hsuan Ren ; Chein-Chi Chang ; D'Amico, F.
more authors

One of the challenges in remote sensing image processing is subpixel detection where the target size is smaller than the ground sampling distance, therefore, embedded in a single pixel. Under such a circumstance, these targets can be only detected spectrally at the subpixel level, not spatially as ordinarily conducted by classical image processing techniques. This paper investigates a more challenging issue than subpixel detection, which is the estimation of target size at the subpixel level. More specifically, when a subpixel target is detected, we would like to know "what is the size of this particular target within the pixel?". The proposed approach is to estimate the abundance fraction of a subpixel target present in a pixel, then find what portion it contributes to the pixel that can be used to determine the size of the subpixel target by multiplying the ground sampling distance. In order to make our idea work, the subpixel target abundance fraction must be accurately estimated to truly reflect the portion of a subpixel target occupied within a pixel. So, a fully constrained linear unmixing method is required to reliably estimate the abundance fractions of a subpixel target for its size estimation. In this paper, a recently developed fully constrained least squares linear unmixing is used for this purpose. Experiments are conducted to demonstrate the utility of the proposed method in comparison with an unconstrained linear unmixing method, unconstrained least squares method, two partially constrained least square linear unmixing methods, sum-to-one constrained least squares, and nonnegativity constrained least squares.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 6 )