Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

A numerical study of buried biomass effects on ground-penetrating radar performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Niltawach, N. ; ElectroScience Lab., Ohio State Univ., Columbus, OH, USA ; Chi-Chih Chen ; Johnson, J.T. ; Baertlein, B.A.

It is widely acknowledged that tree roots and other forms of buried biomass can have an adverse effect on the performance of ground-penetrating radars (GPRs). In this paper, we present analyses that examine that effect for ground-contacting GPR systems. A test site containing extensive root infiltration at Eglin Air Force Base, Florida, was excavated, and the root structure and soil were thoroughly characterized. A numerical simulator based on the discrete dipole approximation, which is an integral-equation-based method, was developed, validated, and subsequently used to compute scattering from root structures modeled by an ensemble of buried cylinders. An examination of the results is presented that quantifies the potential for false alarms and increased clutter due to buried roots.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 6 )