By Topic

A Cooperative approach to particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. van den Bergh ; Dept. of Comput. Sci., Univ. of Pretoria, South Africa ; A. P. Engelbrecht

The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of problems, including neural network training. This paper presents a variation on the traditional PSO algorithm, called the cooperative particle swarm optimizer, or CPSO, employing cooperative behavior to significantly improve the performance of the original algorithm. This is achieved by using multiple swarms to optimize different components of the solution vector cooperatively. Application of the new PSO algorithm on several benchmark optimization problems shows a marked improvement in performance over the traditional PSO.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:8 ,  Issue: 3 )