Cart (Loading....) | Create Account
Close category search window
 

Comparison of measurements with prediction methods for propagation by diffraction at 88-108 MHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Asen, W. ; Norwegian Post & Telecommun. Authority, Oslo, Norway

Three methods for predicting attenuation due to diffraction are tested against a large database of 115 614 measurement points, representing 115 614 different path profiles of 100-m horizontal resolution, and vertical root mean square error of about 6 m. The signal level at each geographic measurement point is calculated as the median of about 40 basic measurements, and the measurement database is thus reduced from about four million basic measurements. The mobile measurements are taken from main FM (88-108 MHz) broadcasting emitters located in southern Norway, and the corresponding broadcasting antenna diagrams have been measured by helicopter. Path profiles are categorized by number of terrain obstructions between emitter and receiver, in order to study their effect on each propagation loss method. The current ITU method and Picquenard's construction, with a variable number of included terrain obstructions, are compared with the measurements, and difference statistics are calculated. A particular version of Picquenard's construction is shown to be better than the current ITU method in terrain of Norwegian type. This new method is, in contrast to the ITU method, within the estimated expected errors resulting from using Norwegian digital terrain elevation data.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:52 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.