By Topic

Mobility management alternatives for migration to mobile Internet session-based services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Murakami, K. ; Bell Labs. Res., Holmdel, NJ, USA ; Haase, O. ; JaeSheung Shin ; La Porta, T.F.

Session-based Internet protocol (IP) applications, such as Internet telephony, are an important component of the emerging mobile Internet. The ubiquitous availability of these services is critical to the success of the mobile Internet. Because all-IP networks will be deployed in phases and current mobile telecommunication systems will be in operation for decades to come, the interworking and migration between current network services and all-IP services is a key problem. In this paper, we address seamless roaming for session initiation protocol-based services across current cellular telecommunication networks and emerging all-IP wireless networks, such as those using third-generation and WiFi networks. We present an abstract mobility model, and map this model to three basic approaches for supporting seamless mobility: a master-slave approach, a federated system, and a unified approach. We discuss the challenges and implementation of an instance of the unified mobility management approach, called the Unified Mobility Manager, and then compare the tradeoffs of the three systems using a comparative performance analysis. We conclude that unified mobility management is most efficient if a great deal of interworking is required, and as more users invoke IP-based services; the federated approach is efficient when a single network technology is dominant and data access is limited, but requires sharing of data across networks; the master-slave approach is the least efficient, but is easy to introduce if the number of network types is small.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:22 ,  Issue: 5 )