By Topic

New methodology to evaluate the performance of ring resonators using optical low-coherence reflectometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gottesman, Y. ; Centre Nat. de la Recherche Scientifique, CNRS, Marcoussis, France ; Rao, E.V.K. ; Rabus, D.G.

This paper describes the efficient implementation of optical low-coherence reflectometry (OLCR) measurements to evaluate the performance of InP-based high-index contrast ring resonators. Using examples of racetrack ring resonators, this paper shows here for the first time that all characteristic parameters relevant to resonator design (coupling coefficient k, propagation losses a, and optical cavity length L), and ultimately its performance, can be extracted in a straightforward manner. This is accomplished by introducing a new methodology that implicates OLCR measurements in transmission and also reflection modes as an alternative approach, in comparison with conventional spectral analysis, to extract resonator design parameters.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 6 )