Cart (Loading....) | Create Account
Close category search window

Effective negative-ϵ stopband microstrip lines based on complementary split ring resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Falcone, F. ; Electr. Eng. Dept., Public Univ. of Navarre, Pamplona, Spain ; Lopetegi, T. ; Baena, J.D. ; Marques, R.
more authors

In this letter a super-compact stopband microstrip structure is proposed. The frequency gap is produced by an array of complementary split ring resonators (CSRRs)-a concept proposed here for the first time-etched on the ground plane. This behavior is interpreted as due to the presence of a negative effective dielectric permittivity in the vicinity of resonance. The resulting device produces a deep rejection frequency band with sharp cutoff, and a pass band that exhibits very low losses and good matching. Due to the sub-lambda operation of CSRRs, the electrical size of the device is very small.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:14 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.