By Topic

A high-power MEMS electric induction motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Livermore, C. ; Dept. of Mech. Eng., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Forte, A.R. ; Lyszczarz, T. ; Umans, S.D.
more authors

An electric induction micromotor with a 4-mm-diameter rotor was designed and built for high-power operation. Operated at partial actuating voltage, the motor has demonstrated an air gap power in excess of 20 mW and torque of 3.5 μNm at speeds in excess of 55 000 rpm. Operation at higher power and speed was limited by bearing stability at higher rotational speeds. The device builds on an earlier micromotor demonstrated by Frechette et al. The high power of the present motor is enabled by its low-loss, high-voltage electric stator, which also offers improved efficiency. The development of this electromechanical device is an important enabling step not only for watt-scale micromotors, but also for the development of microelectric generators. This paper presents the motor's design, the fabrication process that was created to meet its stringent design requirements, and its performance to date.

Published in:

Microelectromechanical Systems, Journal of  (Volume:13 ,  Issue: 3 )