By Topic

Fuzzy identification using fuzzy neural networks with stable learning algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen Yu ; Dept. de Control Autom., Mexico City, Mexico ; XiaoOu Li

In general, fuzzy neural networks cannot match nonlinear systems exactly. Unmodeled dynamic leads parameters drift and even instability problem. According to system identification theory, robust modification terms must be included in order to guarantee Lyapunov stability. This paper suggests new learning laws for Mamdani and Takagi-Sugeno-Kang type fuzzy neural networks based on input-to-state stability approach. The new learning schemes employ a time-varying learning rate that is determined from input-output data and model structure. Stable learning algorithms for the premise and the consequence parts of fuzzy rules are proposed. The calculation of the learning rate does not need any prior information such as estimation of the modeling error bounds. This offer an advantage compared to other techniques using robust modification.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 3 )