Cart (Loading....) | Create Account
Close category search window
 

Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
del Jesus, M.J. ; Comput. Sci. Dept., Jaen Univ., Spain ; Hoffmann, F. ; Navascues, L.J. ; Sanchez, L.

This paper proposes a novel Adaboost algorithm to learn fuzzy-rule-based classifiers. Connections between iterative learning and boosting are analyzed in terms of their respective structures and the manner these algorithms address the cooperation-competition problem. The results are used to explain some properties of the former method. The evolutionary boosting scheme is applied to approximate and descriptive fuzzy-rule bases. The advantages of boosting fuzzy rules are assessed by performance comparisons between the proposed method and other classification schemes applied on a set of benchmark classification tasks.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 3 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.