Cart (Loading....) | Create Account
Close category search window
 

Highly spectral-efficient optical code-division multiplexing transmission system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sotobayashi, H. ; Nat. Inst. of Inf. & Commun. Technol., Tokyo, Japan ; Chujo, W. ; Kitayama, K.

A highly spectral-efficient transmission system based on optical code-division multiplexing (OCDM) technique is investigated. To meet the rapid increase in the demand of data bandwidth, spectral efficiency is becoming a key factor in optical transport systems. Several modulation formats along with the optical receiver design have been proposed to upgrade the spectral efficiency. OCDM is one of the promising techniques for this purpose. OCDM is the other class of multiplexing technique than optical time-division multiplexing and wavelength-division multiplexing (WDM). OCDM provides unique features such as asynchronous transmission, secure communication, soft capacity on demand, and high degree of scalability. In this paper, we apply OCDM technique to the highly spectral-efficient transmission system by quaternary phase-shift keying optical encoding/decoding along with ultrafast optical time-gating and optical hard thresholding. As a result, a transmission of 6.4 Tbit/s OCDM/WDM (4 OCDM×40 WDM×40 Gbit/s) using only C-band wavelength region is experimentally demonstrated with 1.6-bit/s/Hz spectral efficiency.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:10 ,  Issue: 2 )

Date of Publication:

March-April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.