By Topic

Interaction of molecular and atomic hydrogen with single-wall carbon nanotubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. A. Alonso ; Dept. de Fisica Teorica, Univ. de Valladolid, Spain ; J. S. Arellano ; L. M. Molina ; A. Rubio
more authors

Density functional calculations are performed to study the interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes. Molecular physisorption is predicted to be the most stable adsorption state, with the molecule at equilibrium at a distance of 5-6 a.u. from the nanotube wall. The physisorption energies outside the nanotubes are approximately 0.07 eV, and larger inside, reaching a value of 0.17 eV inside the (5,5) nanotube. Although these binding energies appear to be lower than the values required for an efficient adsorption/desorption operation at room temperature and normal pressures, the expectations are better for operation at lower temperatures and higher pressures, as found in many experimental studies. A chemisorption state with the molecule dissociated has also been found, with the H atoms much closer to the nanotube wall. However, this state is separated from the physisorption state by an activation barrier of 2 eV or more. The dissociative chemisorption weakens carbon-carbon bonds, and the concerted effect of many incoming molecules with sufficient kinetic energies can lead to the scission of the nanotube.

Published in:

IEEE Transactions on Nanotechnology  (Volume:3 ,  Issue: 2 )