Cart (Loading....) | Create Account
Close category search window

Parallelization and scheduling of data intensive particle physics analysis jobs on clusters of PCs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ponce, S. ; Eur. Lab. for Particle Phys., CERN, Geneva, Switzerland ; Hersch, R.D.

Summary form only given. Scheduling policies are proposed for parallelizing data intensive particle physics analysis applications on computer clusters. Particle physics analysis jobs require the analysis of tens of thousands of particle collision events, each event requiring typically 200ms processing time and 600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first view, particle physics jobs seem to be easy to parallelize, since particle collision events can be processed independently one from another. However, since large amounts of data need to be accessed, the real challenge resides in making an efficient use of the underlying computing resources. We propose several job parallelization and scheduling policies aiming at reducing job processing times and at increasing the sustainable load of a cluster server. Since particle collision events are usually reused by several jobs, cache based job splitting strategies considerably increase cluster utilization and reduce job processing times. Compared with straightforward job scheduling on a processing form, cache based first in first out job splitting speeds up average response times by an order of magnitude and reduces job waiting times in the system's queues from hours to minutes. By scheduling the jobs out of order, according to the availability of their collision events in the node disk caches, response times are further reduced, especially at high loads. In the delayed scheduling policy, job requests are accumulated during a time period, divided into subjob requests according to a parameterizable subjob size, and scheduled at the beginning of the next time period according to the availability of their data segments within the disk node caches. Delayed scheduling sustains a load close to the maximal theoretically sustainable load of a cluster, but at the cost of longer average response times. Finally we propose an adaptive delay scheduling approach, where the scheduling delay is adapted to the current load. This last scheduling approach sustains very high loads and offers low response times at normal loads.

Published in:

Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International

Date of Conference:

26-30 April 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.