By Topic

Evolutionary algorithms for optimal placement of antennae in radio network design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Alba, E. ; Departamento de Lenguajes y Ciencias de la Computacion, Malaga Univ., Spain

Summary form only given. Evolutionary algorithms (EAs) are applied to solve the radio network design problem (RND). The task is to find the best set of transmitter locations in order to cover a given geographical region at an optimal cost. Usually, parallel EAs are needed in order to cope with the high computational requirements of such a problem. Here, we try to develop and evaluate a set of sequential and parallel genetic algorithms (GAs) in order to solve efficiently the RND problem. The results show that our distributed steady state GA is an efficient and accurate tool for solving RND that even outperforms existing parallel solutions. The sequential algorithm performs very efficiently from a numerical point of view, although the distributed version is much faster, with an observed linear speedup.

Published in:

Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International

Date of Conference:

26-30 April 2004