By Topic

On the feasibility of incremental checkpointing for scientific computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sancho, J.C. ; Performance & Archit. Lab., Los Alamos Nat. Lab., NM, USA ; Petrini, F. ; Johnson, G. ; Frachtenberg, E.

Summary form only given. In the near future large-scale parallel computers will feature hundreds of thousands of processing nodes. In such systems, fault tolerance is critical as failures will occur very often. Checkpointing and rollback recovery has been extensively studied as an attempt to provide fault tolerance. However, current implementations do not provide the total transparency and full flexibility that are necessary to support the new paradigm of autonomic computing - systems able to self-heal and self-repair. We provide an in-depth evaluation of incremental checkpointing for scientific computing. The experimental results, obtained on a state-of-the art cluster running several scientific applications, show that efficient, scalable, automatic and user-transparent incremental checkpointing is within reach with current technology.

Published in:

Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International

Date of Conference:

26-30 April 2004