By Topic

Neural dynamics based full-state tracking control of a mobile robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang, S.X. ; Adv. Robotics & Intelligent Syst. Lab., Guelph Univ., Ont., Canada ; Haowen Yang ; Meng, M.Q.-H.

In this paper, a novel biologically inspired approach to real-time tracking control of a nonholonomic mobile robot is proposed. The proposed algorithm incorporates a neural dynamics model derived from a biological membrane equation with the conventional full-state tracking control technique. It is capable of generating real-time smooth and continuous velocity control signals that drive the mobile robot to follow desired trajectories. The proposed approach resolves the speed jump problem existing in some previous tracking controllers. In addition, it can track both continuous and discrete paths. The practicality and effectiveness of the proposed tracking controller were demonstrated by simulation and comparison results.

Published in:

Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on  (Volume:5 )

Date of Conference:

26 April-1 May 2004