Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Fabrication and accelerated hermeticity testing of an on-wafer package for RF MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Margomenos, A. ; Radiat. Lab., Univ. of Michigan, Ann Arbor, MI, USA ; Katehi, L.P.B.

A hermetic silicon micromachined on-wafer dc-to-40-GHz packaging scheme for RF microelectromechanical systems (MEMS) switches is presented. The designed on-wafer package has a deembedded insertion loss of 0.03 dB per transition up to 40 GHz (a total measured loss of 0.3 dB including a 2.7-mm-long through line) and a return loss below -18dB up to 40 GHz. The hermeticity of the packaged is tested using an autoclave chamber with accelerated conditions of 130°C, 2.7 atm of pressure, and 100% relative humidity. The fabrication process is designed so as to be completely compatible with the MEMS switch process, hence, allowing the parallel fabrication of all the components on a single wafer. The on-wafer proposed packaging approach requires no external wiring to achieve signal propagation and, thus, it has the potential for lower loss and better performance at higher frequencies.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 6 )