Cart (Loading....) | Create Account
Close category search window
 

Residual life predictions from vibration-based degradation signals: a neural network approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gebraeel, N. ; Sch. of Ind. Eng., Purdue Univ., West Lafayette, IN, USA ; Lawley, M. ; Liu, R. ; Parmeshwaran, V.

Maintenance of mechanical and rotational equipment often includes bearing inspection and/or replacement. Thus, it is important to identify current as well as future conditions of bearings to avoid unexpected failure. Most published research in this area is focused on diagnosing bearing faults. In contrast, this paper develops neural-network-based models for predicting bearing failures. An experimental setup is developed to perform accelerated bearing tests where vibration information is collected from a number of bearings that are run until failure. This information is then used to train neural network models on predicting bearing operating times. Vibration data from a set of validation bearings are then applied to these network models. Resulting predictions are then used to estimate the bearing failure time. These predictions are then compared with the actual lives of the validation bearings and errors are computed to evaluate the effectiveness of each model. For the best model, we find that 64% of predictions are within 10% of actual bearing life, while 92% of predictions are within 20% of the actual life.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:51 ,  Issue: 3 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.