By Topic

Hybrid identification of nuclear power plant transients with artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. J. Embrechts ; Dept. of Decision Sci. & Eng. Syst., Rensselaer Polytech. Inst., Troy, NY, USA ; S. Benedek

Proper and rapid identification of malfunctions (transients) is of premier importance for the safe operation of nuclear power plants. Feedforward neural networks trained with the backpropagation (BP) algorithm are frequently applied to model simulated nuclear power plant malfunctions. The correct identification of unlabeled transients-or transients of the "don't-know" type have proven to be especially challenging. A novel hybrid neural network methodology is presented which also correctly classifies the unlabeled transients. From this analysis the importance for properly accommodating practical aspects such as the drift of electronics elements of a simulator, the digitization of simulated and actual plant signals, and the accumulating errors during numerical integration became obvious. Beside the feedforward neural networks trained with the BP algorithm, many other types of networks and codes were used for finding the best (sensitive and robust) algorithms. Various neural network based models were successfully applied to identify labeled and unlabeled malfunctions of the Hungarian Paks nuclear power plant simulator. The BP and probabilistic methods have been proven as the most robust against the misleading recognition of unlabeled malfunctions.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:51 ,  Issue: 3 )