By Topic

Asymptotic enumeration methods for analyzing LDPC codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Burshtein ; Sch. of Electr. Eng., Tel-Aviv Univ., Israel ; G. Miller

We show how asymptotic estimates of powers of polynomials with nonnegative coefficients can be used in the analysis of low-density parity-check (LDPC) codes. In particular, we show how these estimates can be used to derive the asymptotic distance spectrum of both regular and irregular LDPC code ensembles. We then consider the binary erasure channel (BEC). Using these estimates we derive lower bounds on the error exponent, under iterative decoding, of LDPC codes used over the BEC. Both regular and irregular code structures are considered. These bounds are compared to the corresponding bounds when optimal (maximum-likelihood (ML)) decoding is applied.

Published in:

IEEE Transactions on Information Theory  (Volume:50 ,  Issue: 6 )