By Topic

Design of reduced-rank MMSE multiuser detectors using random matrix methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li, L. ; Princeton Univ., NJ, USA ; Tulino, A.M. ; Verdu, S.

Reduced-rank minimum mean-squared error (MMSE) multiuser detectors using asymptotic weights have been shown to reduce receiver complexity while maintaining good performance in long-sequence code-division multiple-access (CDMA) systems. In this paper, we consider the design of reduced-rank MMSE receivers in a general framework which includes fading, single and multiantenna receivers, as well as direct-sequence CDMA (DS-CDMA) and multicarrier CDMA (both uplink and downlink). In all these cases, random matrix results are used to obtain explicit expressions for the asymptotic eigenvalue moments of the interference autocorrelation matrix and for the asymptotic weights used in the reduced-rank receiver.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 6 )