By Topic

Integrated CMOS transmit-receive switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
N. A. Talwalkar ; IRF Semicond. USA, Cupertino, CA, USA ; C. P. Yue ; Haitao Gan ; S. S. Wong

CMOS transmit-receive (T/R) switches have been integrated in a 0.18-μm standard CMOS technology for wireless applications at 2.4 and 5.2 GHz. This switch design achieves low loss and high linearity by increasing the substrate impedance of a MOSFET at the frequency of operation using a properly tuned LC tank. The switch design is asymmetric to accommodate the different linearity and isolation requirements in the transmit and receive modes. In the transmit mode, the switch exhibits 1.5-dB insertion loss, 28-dBm power, 1-dB compression point (P1dB), and 30-dB isolation, at 2.4 and 5.2 GHz. In the receive mode, the switch achieves 1.6-dB insertion loss, 11.5-dBm P1dB, and 15-dB isolation, at 2.4 and 5.2 GHz. The linearity obtained in the transmit mode is the highest reported to date in a standard CMOS process. The switch passes the 4-kV Human Body Model electrostatic discharge test. These results show that the switch design is suitable for narrow-band applications requiring a moderate-high transmitter power level (<1 W).

Published in:

IEEE Journal of Solid-State Circuits  (Volume:39 ,  Issue: 6 )