By Topic

An interacting multiple model probabilistic data association filter for cavity boundary extraction from ultrasound images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abolmaesumi, P. ; Sch. of Comput., Queen''s Univ., Kingston, Ont., Canada ; Sirouspour, M.R.

This paper presents a novel segmentation technique for extracting cavity contours from ultrasound images. The problem is first discretized by projecting equispaced radii from an arbitrary seed point inside the cavity toward its boundary. The distance of the cavity boundary from the seed point is modeled by the trajectory of a moving object. The motion of this moving object is assumed to be governed by a finite set of dynamical models subject to uncertainty. Candidate edge points obtained along each radius include the measurement of the object position and some false returns. The modeling approach enables us to use the interacting multiple model estimator along with a probabilistic data association filter, for contour extraction. The convergence rate of the method is very fast because it does not employ any numerical optimization. The robustness and accuracy of the method are demonstrated by segmenting contours from a series of ultrasound images. The results are validated through comparison with manual segmentations performed by an expert. An application of the method in segmenting bone contours from computed tomography images is also presented.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 6 )