Cart (Loading....) | Create Account
Close category search window
 

Population-based incremental interactive concept learning for image retrieval by stochastic string segmentations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghebreab, S. ; Departments of Radiol. & Med. Informatics, Biomed. Imaging Group Rotterdam, Netherlands ; Jaffe, C.Carl ; Smeulders, A.W.M.

We propose a method for concept-based medical image retrieval that is a superset of existing semantic-based image retrieval methods. We conceive of a concept as an incremental and interactive formalization of the user's conception of an object in an image. The premise is that such a concept is closely related to a user's specific preferences and subjectivity and, thus, allows to deal with the complexity and content-dependency of medical image content. We describe an object in terms of multiple continuous boundary features and represent an object concept by the stochastic characteristics of an object population. A population-based incrementally learning technique, in combination with relevance feedback, is then used for concept customization. The user determines the speed and direction of concept customization using a single parameter that defines the degree of exploration and exploitation of the search space. Images are retrieved from a database in a limited number of steps based upon the customized concept. To demonstrate our method we have performed concept-based image retrieval on a database of 292 digitized X-ray images of cervical vertebrae with a variety of abnormalities. The results show that our method produces precise and accurate results when doing a direct search. In an open-ended search our method efficiently and effectively explores the search space.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.