By Topic

Design space exploration for optimizing on-chip communication architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lahiri, K. ; Dept. of Electr. & Comput. Eng., Univ. of California San Diego, La Jolla, CA, USA ; Raghunathan, A. ; Dey, S.

Rapid growth in the complexity of system-on-chips is being accompanied by increasing volume and diversity of on-chip communication traffic, which in turn, is driving the development of advanced system-level communication architectures. While these architectures have the potential to improve system performance, they pose significant new challenges to the system designer, owing to the complex design space defined by the availability of numerous network topologies, communication protocols, and mapping alternatives for system communications. In this paper, we address the problem of mapping a system's communication requirements to a given communication architecture template. We illustrate the nature of the communication architecture design space, and describe an exploration methodology that uses efficient algorithms to help automate the process of mapping the system communications to the selected template. In addition, we demonstrate the importance of simultaneously optimizing the on-chip communication protocols in order to maximize system performance. Experiments conducted on example systems, including a cell forwarding unit of an ATM switch, indicate that the proposed techniques aid in automatically constructing communication architectures that have high performance. For the systems we considered, the solutions generated using our methodology had 53% superior performance (on average), over those based on conventional architectures and mapping approaches. The algorithms used in the proposed methodology are computationally efficient, and scale well with increasing communication architecture complexity.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 6 )