Cart (Loading....) | Create Account
Close category search window
 

Efficient library characterization for high-level power estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dhaou, I.B. ; Turku Center for Comput. Sci., Turko, Finland ; Tenhunen, H.

This paper describes LP-DSM, which is an algorithm used for efficient library characterization in high-level power estimation. LP-DSM characterizes the power consumption of building blocks using the entropy of primary inputs and primary outputs. The experimental results showed that over a wide range of benchmark circuits implemented using full custom design in 0.35-/spl mu/m 3.3 V CMOS process the statistical performance (mean and maximum error) of LP-DSM is comparable or sometimes better than most of the published algorithms. Moreover, it was found that LP-DSM has the lowest prediction sum of squares, which makes it an efficient tool for power prediction. Furthermore, the complexity of the LP-DSM is linear in relation to the number of primary inputs (O(NI)), whereas state of the art published library characterization algorithms have a complexity of O(NI/sup 2/).

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:12 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.