By Topic

A magnetocaloric pump for microfluidic applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
L. J. Love ; Robotics & Energetic Syst. Group, Oak Ridge Nat. Lab., TN, USA ; J. F. Jansen ; T. E. McKnight ; Y. Roh
more authors

A magnetocaloric pump provides a simple means of pumping fluid using only external thermal and magnetic fields. The principle, which can be traced back to the early work of Rosensweig, is straightforward. Magnetic materials tend to lose their magnetization as the temperature approaches the material's Curie point. Exposing a column of magnetic fluid to a uniform magnetic field coincident with a temperature gradient produces a pressure gradient in the magnetic fluid. As the fluid heats up, it loses its attraction to the magnetic field and is displaced by cooler fluid. The impact of such a phenomenon is obvious: fluid propulsion with no moving mechanical parts. Until recently, limitations in the magnetic and thermal properties of conventional materials severely limited practical operating pressure gradients. However, recent advancements in the design of metal substituted magnetite enable fine control over both the magnetic and thermal properties of magnetic nanoparticles, a key element in colloidal-based magnetic fluids (ferrofluids). This paper begins with a basic description of the process and previous limitations due to material properties. This is followed by a review of existing methods of synthesizing magnetic nanoparticles as well as an introduction to a new approach based on thermophilic metal-reducing bacteria. We compare two compounds and show, experimentally, significant variation in specific magnetic and thermal properties. We develop the constitutive thermal, magnetic, and fluid dynamic equations associated with a magnetocaloric pump and validate our finite-element model with a series of experiments. Preliminary results show a good match between the model and experiment as well as approximately an order of magnitude increase in the fluid flow rate over conventional magnetite-based ferrofluids operating below 80°C. Finally, as a practical demonstration, we describe a novel application of this technology: pumping fluids at the "lab-on-a-chip" microfluidic scale.

Published in:

IEEE Transactions on NanoBioscience  (Volume:3 ,  Issue: 2 )