By Topic

Shape recovery of an optically trapped vesicle: effect of flow velocity and temperature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ji-Jinn Foo ; Max Planck Inst. of Molecular Cell Biol. & Genetics, Dresden, Germany ; Chan, V. ; Kuo-Kang Liu

A new biophysical approach based on optical tweezers is developed to measure the time-dependent shape transformation and recovery of a single liposome, which is induced by the sudden stop of a moving liposome from various flow velocities at constant temperature. A simple viscoelastic model has been applied to correlate the temporal geometric parameter of the deformed liposome with a characteristic time constant, i.e., the ratio of membrane viscosity to elasticity. Our results show that membrane viscosity becomes dominant in governing the shape recovery rate when sample temperature goes beyond the main phase transition temperature of the phospholipid bilayer. More importantly, flow speed and vesicle size are demonstrated as key physical determinants for the shape recovery of liposome.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:3 ,  Issue: 2 )