By Topic

A parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Martines, E. ; Dept. of Electron. & Electr. Eng., Univ. of Glasgow, UK ; McGhee, K. ; Wilkinson, C. ; Curtis, A.

Cells in the human body come across many types of information, which they respond to. Both material chemistry and topography of the surface where they adhere have an effect on cell shape, proliferation, migration, and gene expression. It is possible to create surfaces with topography at the nanometric scale to allow observation of cell-topography interactions. Previous work has shown that 100-nm-diameter pits on a 300-nm pitch can have a marked effect in reducing the adhesion of rat fibroblasts in static cultures. In the present study, a flow of cell suspension was used to investigate cell adhesion onto nanopits in dynamic conditions, by means of a parallel-plate flow chamber. A flow chamber with inner nanotopography has been designed, which allows real-time observation of the flow over the nanopits. A nanopitted pattern was successfully embossed into polymethylmethacrylate to meet the required shape of the chamber. Dynamic cell adhesion after 1 h has been quantified and compared on flat and nanopitted polymethylmethacrylate substrates. The nanopits were seen to be significantly less adhesive than the flat substrates (p<0.001), which is coherent with previous observations of static cultures.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:3 ,  Issue: 2 )