Cart (Loading....) | Create Account
Close category search window
 

Estimative current mode control technique for DC-DC converters operating in discontinuous conduction mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ferdowsi, M. ; Electr. Power & Power Electron. Center, Illinois Inst. of Technol., Chicago, IL, USA ; Emadi, A.

A new control technique for DC-DC converters is introduced and applied to a boost converter operating in discontinuous conduction mode (DCM). In contrast to conventional control methods, the principal idea of the proposed control scheme is to obtain samples of the required signals and estimate the required switch-on time. The proposed technique is applicable to any converter operating in DCM, including power factor correctors (PFC), however, this letter mainly focuses on boost topology. In this letter, the main mathematical concept of a new control algorithm is introduced, as well as the robustness investigation of the proposed method with simulation and experimental results.

Published in:

Power Electronics Letters, IEEE  (Volume:2 ,  Issue: 1 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.