By Topic

Novel molecular device based on electrostatic interactions in organic polymers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwok, H.L. ; Centre for Adv. Mater. & Related technology, Univ. of Victoria, BC, Canada ; Xu, J.B.

A number of researchers have reported attempts to design molecular level devices. One approach is to make use of electrostatic interactions in different parts of a polymeric molecule. This paper reports a means to achieve this by adding space charge to a molecule consisting of symmetric and asymmetric subgroups. Physically, space charge residing in a subgroup produces a dipolar charge layer thereby creating a potential trough in the polymer backbone. By lifting or lowering this potential minimum, it is possible to modify the terminal current. The effect of space charge on the potential profile in the polymer backbone was examined and the change correlated to data on carrier mobilities for OC1C10-PPV reported in the literature. Modulation of space charge in the subgroup allows the manipulation of current flow along the polymer backbone, forming the basis for the development of a molecular device. A first-order analysis suggested that such a device could have current-voltage (I-V) characteristics similar to those of a MOSFET at subthreshold, with an estimated transconductance ≈1-2 pA/V and a cutoff frequency ≈1015 Hz.

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:151 ,  Issue: 2 )