By Topic

Texture analysis using gaussian weighted grey level co-occurrence probabilities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jobanputra, R. ; University of Waterloo ; Clausi, D.A.

The discrimination of textures is a significant aspect in segmenting SAR sea ice imagery. Texture features calculated from grey level co-occurring probabilities (GLCP) are well accepted and applied in the analysis of many images. When calculating GLCPs, each co-occurring pixel pair within the image window is given a uniform weighting. Although a novel technique, co-occurring texture features have a tendency to misclassify and erode texture boundaries due to the large window sizes needed to capture meaningful statistics. A method is proposed whereby co-occurring pixel pairs closer to the center of the image window are assigned larger cooccurring probabilities according to a Gaussian distribution. By using a Gaussian weighting scheme to calculate the GLCPs, less significance is given to pixel pairs that are on the outlying regions of the window, which have a tendency to produce erroneous statistics as the image window overlaps a texture boundary. This method proves to preserve the edge strength between textures and provides better segmentation at the expense of computational complexity.

Published in:

Computer and Robot Vision, 2004. Proceedings. First Canadian Conference on

Date of Conference:

17-19 May 2004