By Topic

Comparison of low-frequency noise in III-V and Si/SiGe HBTs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pascal, F. ; Univ. Montpellier II, France ; Chay, C. ; Deen, M.J. ; G-Jarrix, S.
more authors

The low-frequency noise characteristics of double self-aligned InP/InGaAs and two types of Si/SiGe heterojunction bipolar transistors (HBTs) were investigated. Spectral analysis shows no striking differences; the spectra are composed of a 1/f component and the white noise is always reached at low biases. A general trend for all the transistors was the presence of Lorentzian component(s) for the smallest devices. The voltage coherence function was always unity for SiGe transistors; and for the first time, it was found to be close to zero for InP devices. Concerning the 1/f noise level, both types of transistors have approximately a quadratic dependence on base current bias and an inverse dependence on the emitter area. Thus, a comparison of the 1/f noise level has been made using the Kb parameter, and values around 10-9 μm2 for SiGe HBTs and around 10-8 μm2 for InP HBTs were found. These results are of the same order of magnitude as the best published ones. The low-frequency noise results suggest that excess noise sources are mainly located at the intrinsic emitter-base junction for the two types of SiGe devices, and, for the InP HBTs, a correlated noise source is located at the emitter periphery. To compare different devices and technologies, fc/fT was studied as a function of collector current density and for some HBT technologies fc/fT∝Jc (fc is corner frequency at which the white noise and 1/f noise are equal and fT is the unity current gain frequency). The effects of different processing conditions, designs and temperature were also investigated and discussed.

Published in:

Circuits, Devices and Systems, IEE Proceedings -  (Volume:151 ,  Issue: 2 )