By Topic

Analysing superimposed oriented patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stuke, I. ; Inst. for Signal Process., Univ. of Lubeck, Germany ; Aach, T. ; Barth, E. ; Mota, C.

Estimation of local orientation in images is often posed as the task of finding the minimum variance axis in a local neighborhood. The solution is given as the eigenvector belonging to the smaller eigenvalue of a 2×2 tensor. Ideally, the tensor is rank-deficient, i.e., the smaller eigenvalue is zero. A large minimal eigenvalue signals the presence of more than one local orientation. We describe a framework for estimating such superimposed orientations. Our analysis of superimposed orientations is based on the eigensystem analysis of a suitably extended tensor. We show how to carry out the eigensystem analysis efficiently using tensor invariants. Unlike in the single orientation case, the eigensystem analysis does not directly yield the orientations, rather, it provides so-called mixed orientation parameters. We therefore show how to decompose the mixed orientation parameters into the individual orientations. These, in turn, allow the superimposed patterns to be separated.

Published in:

Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on

Date of Conference:

28-30 March 2004