By Topic

Spots segmentation in SAR images for remote sensing of environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The paper proposes an algorithm to segment spots in synthetic aperture radar (SAR) images in order to support environmental remote monitoring. This approach consists of isolating dark areas that may have originated from oil pollution, thus achieving the aim of our investigation. The proposed algorithm combines a region growing approach and a multiscale analysis employed by an undecimated wavelet transform to localize dark areas in the sea. The undecimated wavelet applied to SAR images smooths the speckle noise while enhancing edges, thus providing a better result for the proposed segmentation algorithm that is achieved by a modified region growing approach. The minmax scheme is used to provide post processing of the segmented image. The algorithms were tested on real SAR images of oil spills.

Published in:

Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on

Date of Conference:

28-30 March 2004