By Topic

Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kai Yu ; Dept. of Signals, R. Inst. of Technol., Stockholm, Sweden ; Bengtsson, M. ; Ottersten, B. ; McNamara, D.
more authors

In this paper, we first verify a previously proposed Kronecker-structure-based narrow-band model for nonline-of-sight (NLoS) indoor multiple-input-multiple-output (MIMO) radio channels based on 5.2-GHz indoor MIMO channel measurements. It is observed that, for the narrow-band case, the measured channel coefficients are complex Gaussian distributed and, consequently, we focus on a statistical description using the first- and second-order moments of MIMO radio channels. It is shown that the MIMO channel covariance matrix can be well approximated by the Kronecker product of the covariance matrices, seen from the transmitter and receiver, respectively. A narrow-band model for NLoS indoor MIMO channels is thus verified by these results. As for the wide-band case, it is observed that the average power-delay profile of each element of the channel impulse response matrix fits the exponential decay curve and that the Kronecker structure of the second-order moments can be extended to each channel tap. A wide-band MIMO channel model is then proposed, combining a simple COST 259 single-input-single-output channel model and the Kronecker structure. Monte Carlo simulations are used to generate indoor MIMO channel realizations according to the models discussed. The results are compared with the measured data using the channel capacity and good agreement is found.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 3 )