By Topic

Investigation of compact models for RF noise in SiGe HBTs by hydrodynamic device simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jungemann, C. ; Tech. Univ. Braunschweig, Germany ; Neinhus, B. ; Meinerzhagen, B. ; Dutton, R.W.

A comprehensive investigation of the SPICE and unified compact noise models is performed by comparison with the more fundamental hierarchical hydrodynamic device model. It is shown that the rather simple SPICE and unified compact noise models yield good results for frequencies up to 10 GHz for state-of-the-art SiGe HBTs with a low base resistance. The base noise resistance, a key parameter of the compact noise models turns out to be independent of frequency and bias. It can be well estimated based on the sheet resistance of the intrinsic and extrinsic base or with the modified circle-fit method. The unified model, which in comparison to the SPICE model considers in addition the finite transit time of shot noise, is found to be somewhat more accurate than the SPICE model, especially at higher frequencies and collector currents. But this is achieved at the expense of a transit time parameter which cannot be determined without accurate and detailed noise measurements or physics-based numerical simulations.

Published in:

Electron Devices, IEEE Transactions on  (Volume:51 ,  Issue: 6 )