By Topic

BCI competition 2003-data set Ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. D. Mensh ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; J. Werfel ; H. S. Seung

In one type of brain-computer interface (BCI), users self-modulate brain activity as detected by electroencephalography (EEG). To infer user intent, EEG signals are classified by algorithms which typically use only one of the several types of information available in these signals. One such BCI uses slow cortical potential (SCP) measures to classify single trials. We complemented these measures with estimates of high-frequency (gamma-band) activity, which has been associated with attentional and intentional states. Using a simple linear classifier, we obtained significantly greater classification accuracy using both types of information from the same recording epochs compared to using SCPs alone.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:51 ,  Issue: 6 )