By Topic

Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Weiskopf, N. ; Center for Neurology, Univ. of Tubingen, Germany ; Mathiak, K. ; Bock, S.W. ; Scharnowski, F.
more authors

A brain-computer interface (BCI) based on functional magnetic resonance imaging (fMRI) records noninvasively activity of the entire brain with a high spatial resolution. We present a fMRI-based BCI which performs data processing and feedback of the hemodynamic brain activity within 1.3 s. Using this technique, differential feedback and self-regulation is feasible as exemplified by the supplementary motor area (SMA) and parahippocampal place area (PPA). Technical and experimental aspects are discussed with respect to neurofeedback. The methodology now allows for studying behavioral effects and strategies of local self-regulation in healthy and diseased subjects.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 6 )