Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vetter, R.J. ; Dept. of Biomed. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Williams, J.C. ; Hetke, J.F. ; Nunamaker, E.A.
more authors

An important aspect of the development of cortical prostheses is the enhancement of suitable implantable microelectrode arrays for chronic neural recording. The objective of this study was to investigate the recording performance of silicon-substrate micromachined probes in terms of reliability and signal quality. These probes were found to consistently and reliably provide high-quality spike recordings over extended periods of time lasting up to 127 days. In a consecutive series of ten rodents involving 14 implanted probes, 13/14 (93%) of the devices remained functional throughout the assessment period. More than 90% of the probe sites consistently recorded spike activity with signal-to-noise ratios sufficient for amplitudes and waveform-based discrimination. Histological analysis of the tissue surrounding the probes generally indicated the development of a stable interface sufficient for sustained electrical contact. The results of this study demonstrate that these planar silicon probes are suitable for long-term recording in the cerebral cortex and provide an effective platform technology foundation for microscale intracortical neural interfaces for use in humans.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 6 )