By Topic

Calculated and measured absorption cross sections of lossy objects in reverberation chamber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Carlberg, U. ; Antenna Group, Chalmers Univ. of Technol., Gothenburg, Sweden ; Kildal, P.-S. ; Wolfgang, A. ; Sotoudeh, O.
more authors

Reverberation chambers can be used to measure radiation efficiency of small antennas when these are located close to lossy objects. The lossy objects represent a heavy loading of the chamber. This loading is characterized by the mean absorption cross section of the lossy objects. This paper describes how this mean absorption cross section can be calculated from the scattered far field of an object by using the forward scattering theorem, or from a more laborious near-field evaluation. Results for lossy spheres and cylinders are calculated by using three different codes, based on spherical mode expansion, finite difference time domain techniques, and moment methods, respectively. The results for the cylinder are compared with measured levels in a reverberation chamber.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:46 ,  Issue: 2 )