By Topic

Camera calibration with one-dimensional objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Camera calibration has been studied extensively in computer vision and photogrammetry and the proposed techniques in the literature include those using 3D apparatus (two or three planes orthogonal to each other or a plane undergoing a pure translation, etc.), 2D objects (planar patterns undergoing unknown motions), and 0D features (self-calibration using unknown scene points). Yet, the paper proposes a new calibration technique using 1D objects (points aligned on a line), thus filling the missing dimension in calibration. In particular, we show that camera calibration is not possible with free-moving 1D objects, but can be solved if one point is fixed. A closed-form solution is developed if six or more observations of such a 1D object are made. For higher accuracy, a nonlinear technique based on the maximum likelihood criterion is then used to refine the estimate. Singularities have also been studied. Besides the theoretical aspect, the proposed technique is also important in practice especially when calibrating multiple cameras mounted apart from each other, where the calibration objects are required to be visible simultaneously.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 7 )