By Topic

Multiresolution histograms and their use for recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The histogram of image intensities is used extensively for recognition and for retrieval of images and video from visual databases. A single image histogram, however, suffers from the inability to encode spatial image variation. An obvious way to extend this feature is to compute the histograms of multiple resolutions of an image to form a multiresolution histogram. The multiresolution histogram shares many desirable properties with the plain histogram, including that they are both fast to compute, space efficient, invariant to rigid motions, and robust to noise. In addition, the multiresolution histogram directly encodes spatial information. We describe a simple yet novel matching algorithm based on the multiresolution histogram that uses the differences between histograms of consecutive image resolutions. We evaluate it against five widely used image features. We show that with our simple feature we achieve or exceed the performance obtained with more complicated features. Further, we show our algorithm to be the most efficient and robust.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 7 )