By Topic

Performance of a parallel-plane switching network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mir, N.F. ; Dept. of Electr. Eng., San Jose State Univ., CA, USA ; Mok, C.K.

The design and evaluation of a parallel-plane interconnection network are presented in this paper. The proposed network can be used in data networks as well as in distributed computing systems. The proposed network is a cyclic, deflection-routing based, and hierarchical network and is constructed recursively using the Manhattan-type topology as the basic building block. This network exhibits substantial improvement in performance over its building block two-dimensional network on characteristics such as throughput and fault tolerance and still preserves the ease of implementation. The simulation and analysis in this paper show that the proposed network performs comparably to the hypercube at a much lower cost, even a larger network is used. Unlike other switching networks that use a higher node degree to maintain a small network diameter as the networks grow, the proposed parallel architecture network takes advantage of the expandability in its basic building blocks. This feature of the parallel-plane network offers a low network diameter, while it maintains a fixed and small node degree.

Published in:

Parallel Architectures, Algorithms and Networks, 2004. Proceedings. 7th International Symposium on

Date of Conference:

10-12 May 2004