By Topic

An adaptive clustering approach to dynamic load balancing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hau Yee Sit ; Dept. of Comput., Hong Kong Polytech. Univ., China ; Kei Shiu Ho ; Leong, H.V. ; Luk, R.W.P.
more authors

With the rapidly increasing reliance to distributed systems following the prosperity of low cost networking and the Internet, development of effective techniques for task distribution becomes one of the important issues in distributed computing. During the past few years, most of the load balancing algorithms in practical use employed migration policy with a fixed number of tasks in each step. This paper proposes a task transfer scheme with an adaptive number of tasks transferred between the participating servers for load balancing. The adaptation is achieved by a data mining technique, namely, clustering, via employing the distance-weighted nearest neighborhood algorithm. Experiment results show that our proposed algorithm yields the best performance when compared with several other common approaches.

Published in:

Parallel Architectures, Algorithms and Networks, 2004. Proceedings. 7th International Symposium on

Date of Conference:

10-12 May 2004