By Topic

Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sun, G. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Que., Canada ; Trueman, C.W.

The approximate-factorisation-splitting (CNAFS) method as an efficient implementation of the Crank-Nicolson scheme for solving the three-dimensional Maxwell equations in the time domain, using much less CPU time and memory than a direct implementation, is presented. At each time step, the CNAFS method solves tridiagonal matrices successively instead of solving a huge sparse matrix. It is shown that CNAFS is unconditionally stable and has much smaller anisotropy than the alternating-direction implicit (ADI) method, though the numerical dispersion is the same as in the ADI method along the axes. In addition, for a given mesh density, there will be one value of the Courant number at which the CNAFS method has zero anisotropy, whereas the Crank-Nicolson scheme always has anisotropy. Analysis shows that both ADI and CNAFS have time step-size limits to avoid numerical attenuation, although both are still unconditionally stable beyond their limit.

Published in:

Electronics Letters  (Volume:40 ,  Issue: 10 )