By Topic

LAPACK: A portable linear algebra library for high-performance computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
E. Angerson ; Tennessee Univ., Knoxville, TN, USA ; Z. Bai ; J. Dongarra ; A. Greenbaum
more authors

The goal of the LAPACK project is to design and implement a portable linear algebra library for efficient use on a variety of high-performance computers. The library is based on the widely used LINPACK and EISPACK packages for solving linear equations, eigenvalue problems, and linear least-squares problems, but extends their functionality in a number of ways. The major methodology for making the algorithms run faster is to restructure them to perform block matrix operations (e.g., matrix-matrix multiplication) in their inner loops. These block operations may be optimized to exploit the memory hierarchy of a specific architecture. The LAPACK project is also working on new algorithms that yield higher relative accuracy for a variety of linear algebra problems

Published in:

Supercomputing '90., Proceedings of

Date of Conference:

12-16 Nov 1990