By Topic

Critical biodiversity and connectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Whigham, P.A. ; Dept. of Inf. Sci., Otago Univ., Dunedin, New Zealand

This article explores the concept of connectivity and biodiversity by using a simple model of an ecosystem. The model is different from standard artificial life systems since there is no attempt to solve a particular problem, nor is there competition between individuals that drives a coevolution and fitness. Fitness gradually increases throughout the simulation, and mutation rate varies based on population size. Additionally, the system is run with a low mutation rate aiming to produce steady-state behaviour. A simple niche structure at every site allows concepts such as keystone species to be defined, and allows an exploration of diversity and extinction. The article addresses two main issues with this model: does altering the connectivity of neighbourhoods affect the critical point and stability of an ecosystem, and are species-area relationships determined by connectivity?.

Published in:

Evolutionary Computation, 2003. CEC '03. The 2003 Congress on  (Volume:4 )

Date of Conference:

8-12 Dec. 2003