By Topic

Modeling of direction-dependent Processes using Wiener models and neural networks with nonlinear output error structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ai Hui Tan ; Fac. of Eng., Multimedia Univ., Cyberjaya, Malaysia ; K. Godfrey

The modeling of direction-dependent dynamic processes using Wiener models and recurrent neural network models with nonlinear output error structure is considered. The results obtained are compared for several simulated first-order and second-order processes and using three different types of input signals: a pseudorandom binary signal, an inverse-repeat pseudorandom binary signal and a multisine (sum of harmonics) signal. Experimental results on a real system, namely an electronic nose system, are also presented to illustrate the applicability of the techniques discussed.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:53 ,  Issue: 3 )