By Topic

Neuro-fuzzy TSK network for calibration of semiconductor sensor array for gas measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Osowski ; Warsaw Univ. of Technol., Poland ; T. H. Linh ; K. Brudzewski

The neuro-fuzzy network applying Takagi-Sugeno-Kang (TSK) fuzzy reasoning for the calibration of the semiconductor sensor array is developed in this paper. The structure, as well as the learning algorithm of the neuro-fuzzy network, is presented and tested on the example of estimation of the concentration of gas components in the gaseous mixture (so-called artificial nose problem). The results of numerical experiments are presented and discussed.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:53 ,  Issue: 3 )